The Role of Osteocytes in Disuse

نویسنده

  • Jordan Matthew Spatz
چکیده

A human mission to Mars will be physically demanding and presents a variety of medical risks to crewmembers. It has been recognized for over a century that loading is fundamental for bone health, and that reduced loading, as in prolonged bed rest or space flight, leads to bone loss. Osteocytes, the most abundant bone cell type, are thought to be key mechanical sensors in bone, yet the molecular mechanism of this action remains poorly understood. Improved understanding of how osteocytes regulate skeletal responses to mechanical loading and unloading could have significant implications for treatment of bone disorders related to disuse or immobilization. Thus, we conducted in vitro and in vivo studies on osteocytes exposed to unloading to investigate their role in disuse and microgravity-induced bone loss. Specifically, we generated and characterized a novel osteocytic cell line that recapitulates the response to hormonal and mechanical stimuli of osteocytes in vivo. This novel cell line provided the first evidence of a cell-autonomous increase in sclerostin, a potent inhibitor of Wntsignaling, following exposure to simulated microgravity. These cells were also used for a spaceflight mission after demonstrating their ability to maintain an osteocytic phenotype when cultured in a fully automated flight-certified system. Finally, we utilized murine models of unloading to show that pharmacologic inhibition of sclerostin induces bone formation and prevents disuse-induced bone loss. Thesis Supervisor: Mary L. Bouxsein, Ph.D. Associate Professor of Orthopedic Surgery, Harvard Medical School Thesis Supervisor: Paola Divieti Pajevic, MD, Ph.D. Associate Professor of Molecular and Cell Biology, Boston University

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sclerostin's role in bone's adaptive response to mechanical loading

Mechanical loading is the primary functional determinant of bone mass and architecture, and osteocytes play a key role in translating mechanical signals into (re)modelling responses. Although the precise mechanisms remain unclear, Wnt signalling pathway components, and the anti-osteogenic canonical Wnt inhibitor Sost/sclerostin in particular, play an important role in regulating bone's adaptive...

متن کامل

Biological underpinnings of Frost's mechanostat thresholds: the important role of osteocytes.

Harold Frost first proposed the existence of several mechanical thresholds in bone, two of which determine whether bone is added to, or lost from, the skeleton. Recent evidence from bone biology helps elucidate the role of osteocytes in determining these mechanical thresholds. Specifically, when mechanical stimuli fall below the resorption threshold, osteocyte apoptosis occurs, followed by bone...

متن کامل

Osteocyte morphology in fibula and calvaria --- is there a role for mechanosensing?

INTRODUCTION External mechanical forces on cells are known to influence cytoskeletal structure and thus cell shape. Mechanical loading in long bones is unidirectional along their long axes, whereas the calvariae are loaded at much lower amplitudes in different directions. We hypothesised that if osteocytes, the putative bone mechanosensors, can indeed sense matrix strains directly via their cyt...

متن کامل

Simulated resistance training, but not alendronate, increases cortical bone formation and suppresses sclerostin during disuse.

Mechanical loading modulates the osteocyte-derived protein sclerostin, a potent inhibitor of bone formation. We hypothesized that simulated resistance training (SRT), combined with alendronate (ALEN) treatment, during hindlimb unloading (HU) would most effectively mitigate disuse-induced decrements in cortical bone geometry and formation rate (BFR). Sixty male, Sprague-Dawley rats (6-mo-old) we...

متن کامل

ACELL September 46/3

Dodd, J. S., J. A. Raleigh, and T. S. Gross. Osteocyte hypoxia: a novel mechanotransduction pathway. Am. J. Physiol. 277 (Cell Physiol. 46): C598–C602, 1999.—Bone is a unique tissue in which to examine mechanotransduction due to its essential role in weight bearing. Within bone, the osteocyte is an ideal cellular mechanotransducer candidate. Because osteocytes reside distant from the blood supp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015